3.245 \(\int \cot ^3(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=88 \[ -\frac{\left (a^2 A-2 a b B-A b^2\right ) \log (\sin (c+d x))}{d}-\frac{a^2 A \cot ^2(c+d x)}{2 d}+x \left (b^2 B-a (a B+2 A b)\right )-\frac{a (a B+2 A b) \cot (c+d x)}{d} \]

[Out]

(b^2*B - a*(2*A*b + a*B))*x - (a*(2*A*b + a*B)*Cot[c + d*x])/d - (a^2*A*Cot[c + d*x]^2)/(2*d) - ((a^2*A - A*b^
2 - 2*a*b*B)*Log[Sin[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.191368, antiderivative size = 88, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.129, Rules used = {3604, 3628, 3531, 3475} \[ -\frac{\left (a^2 A-2 a b B-A b^2\right ) \log (\sin (c+d x))}{d}-\frac{a^2 A \cot ^2(c+d x)}{2 d}+x \left (b^2 B-a (a B+2 A b)\right )-\frac{a (a B+2 A b) \cot (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^3*(a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(b^2*B - a*(2*A*b + a*B))*x - (a*(2*A*b + a*B)*Cot[c + d*x])/d - (a^2*A*Cot[c + d*x]^2)/(2*d) - ((a^2*A - A*b^
2 - 2*a*b*B)*Log[Sin[c + d*x]])/d

Rule 3604

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((B*c - A*d)*(b*c - a*d)^2*(c + d*Tan[e + f*x])^(n + 1))/(f*d^2*(n +
1)*(c^2 + d^2)), x] + Dist[1/(d*(c^2 + d^2)), Int[(c + d*Tan[e + f*x])^(n + 1)*Simp[B*(b*c - a*d)^2 + A*d*(a^2
*c - b^2*c + 2*a*b*d) + d*(B*(a^2*c - b^2*c + 2*a*b*d) + A*(2*a*b*c - a^2*d + b^2*d))*Tan[e + f*x] + b^2*B*(c^
2 + d^2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^
2, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]

Rule 3628

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2
)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - C) - (A*b - a*B - b*C)*Tan[e +
 f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2
 + b^2, 0]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot ^3(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx &=-\frac{a^2 A \cot ^2(c+d x)}{2 d}+\int \cot ^2(c+d x) \left (a (2 A b+a B)-\left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)+b^2 B \tan ^2(c+d x)\right ) \, dx\\ &=-\frac{a (2 A b+a B) \cot (c+d x)}{d}-\frac{a^2 A \cot ^2(c+d x)}{2 d}+\int \cot (c+d x) \left (-a^2 A+A b^2+2 a b B+\left (b^2 B-a (2 A b+a B)\right ) \tan (c+d x)\right ) \, dx\\ &=\left (b^2 B-a (2 A b+a B)\right ) x-\frac{a (2 A b+a B) \cot (c+d x)}{d}-\frac{a^2 A \cot ^2(c+d x)}{2 d}+\left (-a^2 A+A b^2+2 a b B\right ) \int \cot (c+d x) \, dx\\ &=\left (b^2 B-a (2 A b+a B)\right ) x-\frac{a (2 A b+a B) \cot (c+d x)}{d}-\frac{a^2 A \cot ^2(c+d x)}{2 d}-\frac{\left (a^2 A-A b^2-2 a b B\right ) \log (\sin (c+d x))}{d}\\ \end{align*}

Mathematica [C]  time = 0.344597, size = 123, normalized size = 1.4 \[ \frac{-2 \left (a^2 A-2 a b B-A b^2\right ) \log (\tan (c+d x))-a^2 A \cot ^2(c+d x)-2 a (a B+2 A b) \cot (c+d x)+(a-i b)^2 (A-i B) \log (\tan (c+d x)+i)+(a+i b)^2 (A+i B) \log (-\tan (c+d x)+i)}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^3*(a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(-2*a*(2*A*b + a*B)*Cot[c + d*x] - a^2*A*Cot[c + d*x]^2 + (a + I*b)^2*(A + I*B)*Log[I - Tan[c + d*x]] - 2*(a^2
*A - A*b^2 - 2*a*b*B)*Log[Tan[c + d*x]] + (a - I*b)^2*(A - I*B)*Log[I + Tan[c + d*x]])/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.081, size = 141, normalized size = 1.6 \begin{align*}{\frac{A{b}^{2}\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}+{b}^{2}Bx+{\frac{B{b}^{2}c}{d}}-2\,Axab-2\,{\frac{A\cot \left ( dx+c \right ) ab}{d}}-2\,{\frac{Aabc}{d}}+2\,{\frac{Bab\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{{a}^{2}A \left ( \cot \left ( dx+c \right ) \right ) ^{2}}{2\,d}}-{\frac{{a}^{2}A\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{a}^{2}Bx-{\frac{B\cot \left ( dx+c \right ){a}^{2}}{d}}-{\frac{B{a}^{2}c}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^3*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x)

[Out]

1/d*A*b^2*ln(sin(d*x+c))+b^2*B*x+1/d*B*b^2*c-2*A*x*a*b-2/d*A*cot(d*x+c)*a*b-2/d*A*a*b*c+2/d*B*a*b*ln(sin(d*x+c
))-1/2*a^2*A*cot(d*x+c)^2/d-a^2*A*ln(sin(d*x+c))/d-a^2*B*x-1/d*B*cot(d*x+c)*a^2-1/d*B*a^2*c

________________________________________________________________________________________

Maxima [A]  time = 1.50988, size = 162, normalized size = 1.84 \begin{align*} -\frac{2 \,{\left (B a^{2} + 2 \, A a b - B b^{2}\right )}{\left (d x + c\right )} -{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 2 \,{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left (\tan \left (d x + c\right )\right ) + \frac{A a^{2} + 2 \,{\left (B a^{2} + 2 \, A a b\right )} \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(2*(B*a^2 + 2*A*a*b - B*b^2)*(d*x + c) - (A*a^2 - 2*B*a*b - A*b^2)*log(tan(d*x + c)^2 + 1) + 2*(A*a^2 - 2
*B*a*b - A*b^2)*log(tan(d*x + c)) + (A*a^2 + 2*(B*a^2 + 2*A*a*b)*tan(d*x + c))/tan(d*x + c)^2)/d

________________________________________________________________________________________

Fricas [A]  time = 1.96709, size = 285, normalized size = 3.24 \begin{align*} -\frac{{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left (\frac{\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right )^{2} + A a^{2} +{\left (A a^{2} + 2 \,{\left (B a^{2} + 2 \, A a b - B b^{2}\right )} d x\right )} \tan \left (d x + c\right )^{2} + 2 \,{\left (B a^{2} + 2 \, A a b\right )} \tan \left (d x + c\right )}{2 \, d \tan \left (d x + c\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*((A*a^2 - 2*B*a*b - A*b^2)*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c)^2 + A*a^2 + (A*a^2 + 2*(
B*a^2 + 2*A*a*b - B*b^2)*d*x)*tan(d*x + c)^2 + 2*(B*a^2 + 2*A*a*b)*tan(d*x + c))/(d*tan(d*x + c)^2)

________________________________________________________________________________________

Sympy [A]  time = 4.77574, size = 214, normalized size = 2.43 \begin{align*} \begin{cases} \tilde{\infty } A a^{2} x & \text{for}\: \left (c = 0 \vee c = - d x\right ) \wedge \left (c = - d x \vee d = 0\right ) \\x \left (A + B \tan{\left (c \right )}\right ) \left (a + b \tan{\left (c \right )}\right )^{2} \cot ^{3}{\left (c \right )} & \text{for}\: d = 0 \\\frac{A a^{2} \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} - \frac{A a^{2} \log{\left (\tan{\left (c + d x \right )} \right )}}{d} - \frac{A a^{2}}{2 d \tan ^{2}{\left (c + d x \right )}} - 2 A a b x - \frac{2 A a b}{d \tan{\left (c + d x \right )}} - \frac{A b^{2} \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac{A b^{2} \log{\left (\tan{\left (c + d x \right )} \right )}}{d} - B a^{2} x - \frac{B a^{2}}{d \tan{\left (c + d x \right )}} - \frac{B a b \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{d} + \frac{2 B a b \log{\left (\tan{\left (c + d x \right )} \right )}}{d} + B b^{2} x & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**3*(a+b*tan(d*x+c))**2*(A+B*tan(d*x+c)),x)

[Out]

Piecewise((zoo*A*a**2*x, (Eq(c, 0) | Eq(c, -d*x)) & (Eq(d, 0) | Eq(c, -d*x))), (x*(A + B*tan(c))*(a + b*tan(c)
)**2*cot(c)**3, Eq(d, 0)), (A*a**2*log(tan(c + d*x)**2 + 1)/(2*d) - A*a**2*log(tan(c + d*x))/d - A*a**2/(2*d*t
an(c + d*x)**2) - 2*A*a*b*x - 2*A*a*b/(d*tan(c + d*x)) - A*b**2*log(tan(c + d*x)**2 + 1)/(2*d) + A*b**2*log(ta
n(c + d*x))/d - B*a**2*x - B*a**2/(d*tan(c + d*x)) - B*a*b*log(tan(c + d*x)**2 + 1)/d + 2*B*a*b*log(tan(c + d*
x))/d + B*b**2*x, True))

________________________________________________________________________________________

Giac [B]  time = 1.47828, size = 320, normalized size = 3.64 \begin{align*} -\frac{A a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 4 \, B a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 8 \, A a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 8 \,{\left (B a^{2} + 2 \, A a b - B b^{2}\right )}{\left (d x + c\right )} - 8 \,{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right ) + 8 \,{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - \frac{12 \, A a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 24 \, B a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 12 \, A b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 4 \, B a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 8 \, A a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - A a^{2}}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

-1/8*(A*a^2*tan(1/2*d*x + 1/2*c)^2 - 4*B*a^2*tan(1/2*d*x + 1/2*c) - 8*A*a*b*tan(1/2*d*x + 1/2*c) + 8*(B*a^2 +
2*A*a*b - B*b^2)*(d*x + c) - 8*(A*a^2 - 2*B*a*b - A*b^2)*log(tan(1/2*d*x + 1/2*c)^2 + 1) + 8*(A*a^2 - 2*B*a*b
- A*b^2)*log(abs(tan(1/2*d*x + 1/2*c))) - (12*A*a^2*tan(1/2*d*x + 1/2*c)^2 - 24*B*a*b*tan(1/2*d*x + 1/2*c)^2 -
 12*A*b^2*tan(1/2*d*x + 1/2*c)^2 - 4*B*a^2*tan(1/2*d*x + 1/2*c) - 8*A*a*b*tan(1/2*d*x + 1/2*c) - A*a^2)/tan(1/
2*d*x + 1/2*c)^2)/d